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Executive Summary
This document explores the critical considerations linked to data centers optimized for AI workloads. By highlighting 
the growing computational power required by large language models (LLMs), the paper seeks to inform readers on 
the necessity for advanced networking and innovative physical layer solutions.

This overview of AI data center infrastructure, hardware requirements, and capabilities provides the groundwork 
for a forthcoming comprehensive exploration of in-depth technical considerations.

Due to the energy required by high-
performance hardware and the complexity and 
size of the datasets needed for LLM training and 
inference, AI data centers present signi�cantly 
higher power demands compared to traditional 
hyperscale architectures.

To accommodate very large systems with 
specialized hardware and cooling systems, AI data 
center size – both in terms of physical footprint 
and cubic meters – has grown and continues to 
grow, with future projects indicating even greater 
space requirements.

From sharing model updates during training to 
low-latency connections between accelerators, 
discover the essential load balancing and network 
control mechanisms behind the dynamic demands 
of AI workloads.

AI workloads generate signi�cant heat, 
necessitating advanced thermal management 
methods such as direct-to-chip and immersion 
cooling – traditional air-cooling methods cannot 
meet the cooling requirements of high-density AI 
data center environments.

Choice of network topology de�nes a system’s 
data �ow ef�ciency and readiness for rapid 
scalability. With the aim of minimizing latency 
and maximizing bandwidth, operators must 
select between purpose-designed topologies for 
optimized results.

Looking to the future, we consider a scalable 
Clos network supporting hundreds of thousands 
of endpoints. How can operators ensure robust 
performance and fault tolerance?
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“The emergence of generative AI, with 
its exceptionally large models and truly 
extraordinary computing requirements, has 
driven greater and more rapid change in data 
center networking in the past two years than 
I have seen in the previous decade.”

Alan Keizer
Senior Technology Advisor, AFL
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Introduction 

The surging demand for arti�cial intelligence (AI) and machine learning (ML) technologies 
presents data center operators with unique challenges in terms of increasing, optimizing, 
and maintaining network ef�ciency. To keep pace, modern data center architectures must 
explore new and seamless ways to adopt advanced AI technologies and hardware. 

The unprecedented computational power and energy resources linked to the rise of 
large language models (LLMs) cannot be overlooked, requiring a deeper understanding 
of the energy dynamics, cooling solutions, and network topologies essential for AI data 
center ef�ciency. 

By closely examining multiple performance-related factors, industry leaders can better 
equip the data center operators of tomorrow with the necessary tools and wisdom to 
support the next generation of AI innovations.

This white paper explores the intricacies of AI data center networking, highlighting the 
signi�cant differences between traditional infrastructures and data centers optimized for 
AI workloads.
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Energy consumption 
Energy is power over time, expressed as kilowatt-hours (kWh). Energy consumption is a critical differentiator that 
sets AI data centers apart from traditional data centers. The combination of high-performance hardware and the 
computational demands of training and inference drives the need for massive amounts of power. Large Language 
Models (LLMs), which can have billions or even trillions of parameters, require immense energy resources. As 
models scale, the energy required for both training and inference also increases. This relationship between power 
and scale underpins the energy dynamics in AI data centers.

Training phase
Factors in�uencing energy consumption during the training phase include hardware ef�ciency, dataset size, and 
model complexity. The training phase can be divided into two main components: 

Data processing

This involves cleaning and preparing data before training. For example, the Common Crawl dataset, used to 
train models like GPT-3, comprises 9.5 petabytes of data.  

Iterative computation
 

The power and hardware required during this phase varies based on dataset size and model complexity. 
As model parameters grow, the demand for computational resources increases, leading to greater energy 
consumption over time – advanced accelerators require 3-to-10 times the power but result in hundreds to 
thousands of times the energy consumption.

Inference phase 

Once trained, large model energy consumption levels remain high, particularly in scenarios demanding real-time 
calculations – generally, inference is less computationally intensive than training, but still consumes substantial 
amounts of energy, especially in relation to high-frequency requests. This highlights the ongoing energy demands 
– and ef�cient hardware considerations – of maintaining responsive AI services.

What’s Different About 
an AI Data Center Network?
Large Language Models (LLMs) are systems trained on data to recognize patterns, discern sentiment, and generate human-like language 
in response to prompts. LLM creation follows a two-step process. First, the training phase involves AI models learning from datasets by 
adjusting parameters to improve accuracy. Next, during the inference phase, trained models apply the knowledge learned from training 
to make predictions - or decisions – in response to new data.

LLMs provide the natural language processing capability within the broader AI ecosystem. To train the requisite LLMs for AI data 
center networks requires immense power and computational resources. For example, today’s leading-edge GPUs used to train clusters 
comprising over 100,000 GPUs can each consume 1,200 to 1,500 watts. This results in total data center power in the range of 300 
megawatts moving towards a gigawatt. Let’s breakdown what’s different about an AI data center network.
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Power and cooling
 

AI workloads use 300–1,000 times more power than traditional CPU-powered data center operations. The 
additional power generates heat, requiring sophisticated thermal management. Leading-edge AI/ML systems use 
some form of liquid cooling (i.e., immersion or direct-to-chip).  
 
For high-performance components, direct to chip is the most common cooling method – the latest NVIDIA GB200 
accelerator is only available with direct-to-chip cooling. While immersion methods may offer the highest potential 
per rack, unresolved environmental issues and equipment compatibility considerations may hinder wider adoption. 

Air cooling
 

Traditional air-cooling methods use air to dissipate heat and cool data center components. Solutions include heat 
sinks (passive devices that increase surface areas to enable greater heat transfer to the surrounding air), heat 
pipes (used to transfer heat to cooler areas) and active cooling fans (used to force air toward components). Heat 
dissipation via air cooling is insuf�cient for AI workloads. Heat removal up to 20 kW per rack can be achieved.

Liquid cooling
 

Liquid cooling is an increasingly popular heat dissipation solution in AI data centers – by 2026, 38.6%1 of IT 
professionals surveyed expect to see liquid cooling techniques deployed in data centers. Examples include:

Direct-to-chip 
 

Primarily implemented in large systems. Capable of managing 100kW+ of heat load per rack, adequate for 
today’s most demanding AI workload environments.

Rear-door heat exchangers
 

Designed for high-density data centers with server rack densities exceeding 20 kW per rack (up to 50 kW 
per rack). Mounted at the back of racks, the units utilize chilled water to cool servers. In legacy data centers, 
deploying a limited number of AI/ML racks, operators may retro�t rear-door heat exchangers to enhance 
cooling ef�ciency without the need to overhaul the existing infrastructure.

Immersion cooling
 

Immersion techniques place servers into liquid-�lled tanks (typically using a biodegradable, nontoxic, 
synthetic liquid). With ef�cient heat extraction and lower thermal system power consumption, immersion 
cooling methods represent the most ef�cient technique for AI data centers. However, there are potential 
environmental risks and potential compatibility issues between �uids and server components. Immersion 
technology is not yet widely adopted.  Heat loads more than 250 kW can be accommodated.

AI data centers can reduce carbon emissions using AI-driven cooling strategies. Through data monitoring and 
predictive optimization, AI-powered cooling systems can adapt to energy-ef�cient con�gurations in response 
to environmental changes such as weather. For example, a standout Google statistic from 2016 showed how 
DeepMind (a subsidiary of Google, concentrated on developing AI technologies) was able to reduce the energy 
needed for data center cooling by 40%. The drive to reduce power consumption and heat generation is intensive 

throughout the AI/ML ecosystem.

Physical space requirements 
Compared to traditional hyperscale data centers, AI data centers must have more computing in tightly integrated 
clusters. Large AI/ML clusters require signi�cantly more physical space. The additional square footage not only 
houses the specialized hardware and cooling infrastructure necessary for optimal performance, but also provides 
the data center white space needed for rapid scalability. 

The trend for larger AI data center footprints is expected to continue, with upcoming projects such as Microsoft 
and OpenAI’s Stargate facility indicating power requirements of several gigawatts – potentially requiring nuclear 
power – with a total footprint spanning hundreds of acres. 1. cio

https://www.cio.com/article/3486334/ai-turns-liquid-cooling-into-a-data-center-must-have-solution.html#:~:text=A%20Spring%202024%20survey%20among,over%20the%20next%20few%20years.
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Network Topologies
The choice of AI data center network topology is crucial not only to the ef�cient �ow of data but to the facility’s overall preparedness for 
rapid growth and scalability. Most switches typically have port counts of 32, 36, 64, or 72, with each port supporting multiple channels 
of serial communications, allowing for extensive connectivity options. There are several main types of modern, advanced network 
topology, including Clos, torus, dragon�y, and hybrid infrastructures. The examples below show some of the main network topologies 
used by AI data centers.

Structure 

Clos topologies are multistage packet switching networks in a multi-layer edge, leaf, and 
spine con�guration. Each stage uses multiple switches, connecting multiple inputs and 
outputs in a matrix con�guration for simultaneous input/output connections. 

Usage

In data centers, the spine-and-leaf architecture connects each leaf switch to multiple 
spine switches. This architecture ensures minimal ‘hops’ between endpoints, creating a 
high-performance, high bandwidth, low-latency environment ideal for data centers.

Advantages

The multistage setup enables multiple pathways between endpoints for accelerated 
scalability and greater fault tolerance – for example, if one leaf or spine were to fail, 
bandwidth would degrade but network communication would still be possible. 

Spine

Leaf

Server A Server C Server E Server GServer B Server D Server F Server H

Copyright © 2024 AFL. All rights reserved.

Clos topology (Leaf-spine)
Named after Charles Clos, who formalized the architecture in 1952, Clos topologies serve AI data centers 
by providing non-blocking, high-bandwidth connectivity, which minimizes congestion and supports ef�cient 
data transfer between nodes to reduce task completion times.  
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Torus topology
Torus topologies ef�ciently distribute computing tasks 
to provide low-latency communication between nodes, 
enhancing performance and scalability. Note that torus 
is a highly specialized topology, requiring non-standard 
hardware and software. As such, only major AI/ML 
operators deploy torus topologies (e.g., Google2).  

Optical circuit switching
Connection patterns during machine learning (ML) training tend to be stable. The stability enables slower 
spine tier switching, allowing for the potential replacement of fast packet switching with slower circuit 
switching technologies, such as Google’s Micro-Electro-Mechanical Systems (MEMS)3. 

Advantages include being wavelength, bandwidth, and protocol agnostic, facilitating mixing, matching, 
and evolving technologies, along with signi�cantly lower power consumption. However, drawbacks include 
the current lack of commercial availability and possible concerns regarding cost and reliability.

1-D Torus (4-ary 1-cube)

2-D Torus (4-ary 2-cube)

3-D Torus (3-ary 3-cube)

2. Google
3. Springer

Copyright © 2024 AFL. All rights reserved.

Structure 

Each node is arranged to create a mesh-like 
structure, enabling connections between 
neighboring nodes. In higher dimensions, 
nodes may also connect to neighboring 
nodes in additional dimensions. 

Usage

Parallel computing systems: A torus 
topology suits a parallel computing 
system, as this style of architecture 
supports frequent, local communication 

between nodes. 

Advantages

Torus topologies are relatively simplistic 
in design and provide the low latency 
required for ef�cient local communication. 

https://cloud.google.com/blog/products/ai-machine-learning/introducing-cloud-tpu-v5p-and-ai-hypercomputer
https://link.springer.com/article/10.1007/s13320-023-0693-x
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Clos network for the core layer

Using a multistage switching Clos network for the core layer provides high bandwidth, low-latency, 
and high-speed data transfer.

Dragon�y topology for the aggregation layer

Dragon�y topologies group high-radix routers into virtual servers, minimizing global channel and 
reducing latency. 

Torus topology for compute clusters

Torus topologies enhance fault tolerance and load balancing by connecting nodes in a multi-pathway 
grid-like structure.

Optical Connection Switch (OCS) for inter-layer connectivity 

OCS switches interconnect different layers (i.e., core, aggregation, and compute clusters), enabling 
ef�cient, dynamic optical switching.

The bene�ts of hybrid topologies include independent layer scaling, high availability, and cost 
optimization, providing robust network solutions for modern AI data centers.

What about 
Hybrid Topologies? 
Hybrid data center network topologies combine different elements of different structures for 
optimal performance. For example, a tailored topology may consist of the following elements:
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What is a Fat-tree 
Network?

Data centers commonly use fat-tree network topologies to provide the high bandwidth and low latency essential 
for AI workloads, especially those involving massive data transfers for training and inference. The design ensures 
ef�cient data �ow, scalability, and fault tolerance, making fat-tree topoligies ideal for the demands of modern AI 
applications.

Key characteristics of fat-tree networks

Balanced Connectivity

Each switch in a fat-tree network typically comprises an equal number of uplinks (connections going “up” to 
higher layers) and downlinks (connections going “down” to lower layers). This balance maximizes available 
paths for data transfer and prevents bottlenecks.

Multiple Paths 

The topology features multiple redundant paths between any two endpoints, enhancing fault tolerance and 
allowing for ef�cient load balancing and congestion avoidance.

Scalability

Fat-tree networks are highly scalable. Adding more switches at each layer can expand the network to 
accommodate thousands or even hundreds of thousands of servers without signi�cant redesign.

Spine

Leaf

TOR/Edge

Copyright © 2024 AFL. All rights reserved.
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Top of Rack (ToR) switches (Edge layer)

Role: These switches connect directly to the servers within each rack.
Function: Aggregate and forward server traf�c to the leaf switches.
Alternate names: Also known as Edge Switches.

Leaf switches (Aggregation Layer)

Role: Serve as an intermediary between the ToR switches and the spine switches.
Function: Aggregate and forward traf�c from multiple ToR switches to the spine layer.
Alternate names: Sometimes referred to as Brick switches or Middle of Row (MoR) switches.

Spine Switches (Core Layer)

Role: Act as the backbone of the network.
Function: Provide high-capacity interconnections between leaf switches, enabling any leaf switch to connect 
to any other leaf switch with minimal latency.
Alternate names: Also known as Core switches.

Note: In some contexts, the terms for these layers may vary. The key is understanding the 
hierarchical relationship and function of each layer.

Topology structure
Fat-tree hierarchies consist of three main layers:

Operation and advantages

Equal bandwidth allocation

Uniform performance: Fat-tree networks often employ the same bandwidth and similar switch hardware 
at all layers. This uniformity ensures consistent performance and prevents any single layer from becoming a 
bottleneck.

Cost-effectiveness: Due to economies of scale, using identical switches and transceivers simpli�es 
procurement and reduces costs.

Simpli�ed management: Standardization allows for easier network management, monitoring, and 
capacity planning.

Non-blocking performance

Aggregate bandwidth: Ensuring the total bandwidth available at each layer matches or exceeds the 
bandwidth requirements of the layer below achieves a non-blocking performance.

Optimized routing: Effective routing protocols distribute traf�c evenly across all available paths, preventing 
congestion and maximizing throughput.

Load balancing and fault tolerance

Multiple paths: The network’s multiple redundant paths allow for dynamic rerouting of traf�c in case of link 
or switch failures.

Resilience: Continuous network performance is maintained even if individual components fail, which is 
crucial for mission-critical AI workloads.
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Implementation considerations

Standard link bandwidth

Consistency: Commonly, operators select a standard link bandwidth (e.g., 100 Gbps) for use throughout 
the network.

Port distribution: Switches typically comprise an equal number of ports connected “up” to the next layer 
and “down” to the layer below.

Routing protocols and settings:

Optimization: Operators use routing protocols such as Equal-Cost Multi-Path (ECMP) to distribute traf�c 
evenly across multiple paths.

Workload-speci�c tuning: Settings may be adjusted to optimize for speci�c workloads, such as AI 
training that involves a mix of broadcast and point-to-point communications.

Workload characteristics:

AI training traf�c patterns: During training, there may be broadcast messages to all workers and 
targeted data transfers to speci�c workers.

Subscription levels: In large clusters, some tasks may be con�ned to a subset of nodes (pods), allowing 
for adjusted bandwidth requirements at higher layers.

Example in AI workloads

Distributed training

Communication needs: AI models are often trained across multiple servers that need to share parameters 
and gradients frequently.

Low Latency and high bandwidth: Fat-tree networks provide the necessary infrastructure to handle 
these intensive communication patterns ef�ciently.

Scalability

Expanding clusters: As the demand for computational resources grows, additional switches and 
servers can be added seamlessly.

Performance maintenance: The network’s design ensures that adding more nodes does not 
degrade performance.

Advantages of fat-tree networks

Uniform performance: Each layer can handle traf�c without becoming a bottleneck, ensuring 
smooth data �ow across the network.

Cost-effectiveness: Simpli�es hardware procurement and reduces costs due to the use of 
standardized equipment.

Simpli�ed management: Easier to monitor network performance and plan for expansion.

Scalability: Devices can be added to the network without complex recon�gurations, accommodating 
growth ef�ciently.
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Spine Switches

Leaf Switches

Top of Rack 
Switches

Servers

Front-end Network (FENW) 
vs. Backend Network (BENW)

For AI/ML data centers, the Front-end Network (FENW) and the Backend Network (BENW) each serve essential and 
distinct purposes in optimizing data �ow and processing ef�ciency.

Front End Network (FENW)

The Front-end Network (FENW) connects to every node (CPU), typically accompanied by a parallel management 
network that handles provisioning, orchestration traf�c, and telemetry.

The FENW is the legacy hyperscale network specially designed for data management. The FENW links external 
connections, data storage, and various server types, facilitating seamless data access and integration.

Backend Network (BENW)

The Backend Network (BENW) connects each accelerator with up to 72 accelerators per node - typically 8 - 
interconnected within a scale-up network using technologies like Nvidia’s NVLink and Google’s ICI (while also 
incorporating hardware management for power distribution, cooling, status, and security networks). The switches 
can support multiple external connections; for instance, a 32-port switch can facilitate up to 128 links, enhancing 
the network’s scalability.

The BENW shares model update information during training. By interconnecting multiple accelerators – including 
AI GPUs and TPUs – along with any associated training memory, the BENW creates a tightly-knit, low-latency 
network, enabling all node accelerators to share memory ef�ciently during compute cycles.

For instance, Nvidia’s H100 DGX utilizes eight H100 accelerators, while the GB100 NVL72 features 72 GB200 
accelerators. The strict latency requirements limit the maximum span to one or two racks, employing specialized 
network protocols and switches, often at the chip level. Google achieves optimized network performance with its 
Inter Chip Interconnect (ICI) technology4.4. Google

Copyright © 2024 AFL. All rights reserved.

AI/ML Cluster with Back End Network3-Tier Clos Fabric

https://cloud.google.com/tpu/docs/multislice-introduction
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Connector selection

The very high density of connections per rack for AI/ML servers and switches and the total link counts push 
the data center designer towards multi-�ber connectors such as the MPO family and, increasingly, to the next 
generation very high-density connector types.

MF VSFF connectors, such as the MMC and SN-MT, usher in a new era new era of high-density, low insertion loss 
connectivity by combining a smaller, 16-¬ber, reduced Mechanical Transfer (MT)-style ferrule—Tiny MT (TMT) with 
the Very Small Form Factor duplex connector form factor, such as the MDC or SN connector.

This innovation represents a signi�cant advancement in connector design, particularly in response to increasing 
counts and greater demand for higher port density. As transceivers for these connector interfaces come onto the 
market, MF VSFF connectors will become standard, driving speeds of 800G, 1.6T, and beyond. As such, they are 
likely to become the standard for On Board Optics (OBO) external connections, aligning with the roadmap for 
future connector designs that demand even higher density solutions.

Cable con�guration

Data center operators must con�gure all cabling to optimize performance and maintain data integrity. Due to the 
signi�cant bandwidth demands placed on AI data centers compared to traditional hyperscale infrastructures, AI 
facilities require high-quality cables, maximizing bandwidth while minimizing latency. 
For this reason, qualities such as high-speed, reliable connectivity and resistance to electromagnetic interference 
make optical �ber cabling the ideal choice. 

However, choice of cable is not the only concern. Proper cable management also includes considerations such 
as adopting a structured cabling system, which can mitigate clutter and improve air�ow to maintain optimal 
operating conditions. Additionally, color-coding to simplify troubleshooting contributes to expedited incident 
management.

Transceiver and bandwidth choice

Choosing appropriate transceivers and bandwidth options is pivotal in meeting the high performance demands 
of advanced AI data center workloads. Due to factors such as high data transmission rates and simpli�ed, plug-
and-play compatibility within modern data centers (component compatibility helps prevent bottlenecks), popular 
transceiver choices include Small Form-factor Pluggable Plus (SFP+) and QSFP28. 

Due to the ongoing and rapid evolution of AI data centers, bandwidth considerations must extend to future 
needs. For example, while standard 400GbE transceivers may meet current needs, adopting 800GbE presents 
operators with a forward-planning option. 

Latency and throughput optimization

Ef�cient AI data center performance hinges on minimizing latency and maximizing throughput. By reducing 
data hops, network segmentation and high-performance switches can help resolve latency issues. Maximizing 
throughput requires adequate, high-speed connections and a network topology designed to manage tasks at 
peak demand. BENW paths are typically limited to 100m to constrain latency within the AI/ML cluster.

Quality of Service (QoS)

QoS prioritizes AI workloads to ensure network performance. QoS mechanisms serve to allocate bandwidth 
ef�ciently across high-priority tasks (e.g., real-time data processing), permitting only the most important tasks 
access to resources. Traf�c shaping, policing, and queuing techniques commonly assist operators in managing 
network traf�c. Appropriate QoS policies ensure AI data centers maintain consistent operations, even during 
periods of high demand.

Edge computing integration

By processing data closer to the source (meaning data does not need to travel long distances), edge computing 
reduces latency and bandwidth demands. Deploying edge computing solutions can enhance AI data center 
performance, particularly in relation to tasks requiring real-time processing (e.g., IoT devices, autonomous vehicles, 
etc.). Strategic edge nodes allow data centers to of�oad processing tasks, improving responsiveness. Edge 
computing can also play a role in data security – by enabling operators to store sensitive data closer to the origin, 
there is an inherently mitigated risk of data transmission interception.
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Basic requirements 
Backend networks must provide non-blocking, lossless packet transmission while maintaining packet order (jitter 
must be minimized). Communication should not degrade processor performance – therefore, remote direct 
memory access (RDMA) is essential.  This is a native capability of In�niBand and can be achieved with RDMA over 
converged Ethernet (ROCE) protocol.

Ef�cient load balancing (congestion management)  
Network control mechanisms and parameters must be optimized for speci�c training or inference models and 
job �ow. Ef�cient load balancing involves the strategic distribution of computational tasks across resources (e.g., 
servers) to prevent single-point congestion and ensure optimal network performance. 

The mechanism includes redundancy and failover measures, ensuring seamless rerouting in the event of a single-
point failure to maintain service continuity. Ef�cient load balancing also maximizes ef�cient resource utilization.

Comprehensive Network Control for AI Training
Network control mechanisms and parameters must be optimized for speci�c training or inference models and 
job �ow. Ef�cient load balancing (congestion management) prevents single-point congestion by strategically 
distributing computational tasks. However, load balancing is only one aspect of a much broader network control 
strategy:

Dynamic network demand

Network demand changes throughout training sequences, creating a variable necessitating responsive, 
highly adaptive control mechanisms. 

Failure management
 

In long training sessions on large clusters, failures may occur. Effective network control requires robust 
monitoring (telemetry) to capture and store checkpoint model statuses, detect faults, and facilitate reloading 
and restarting processes. 

Reliability in AI networks is more critical than in legacy hyperscale computing, especially regarding 
technologies such as Ethernet and In�niBand – the networks support Remote Direct Memory Access (RDMA), 
enabling ef�cient, low-latency data transfers with high throughput.

ML training is a process necessitating synchronous subsystem operations. The failure resolution process can 
mean halting cluster processing, identifying the failure point, recon�guring the accelerator array, reloading 
checkpointed interim model parameters, and restarting. 

Operators wishing to enhance performance and reliability must consider scaling up (adding more resources 
to existing nodes) and scaling out (adding more nodes). To ensure optimal communication, each accelerator 
requires a dedicated network connection. Connection density per rack – at both the server and switch levels 
– plays a vital role in maximizing throughput and minimizing latency. This process must be automated to 
ensure seamless recovery following a failure.

Requirements for the Backend 
Network in AI Data Centers
In a 1:1 subscription ratio, each server or node connects to the network via a direct, dedicated link, without sharing bandwidth. This 
setup ensures that each server has unrivaled access to the full capacity of the network link, resulting in consistent performance, reduced 
latency, and high throughput. 

Additional bene�ts for AI data centers include ease of scalability, as operators can add more direct connections as the network grows, 
and simpli�ed network management by mitigating the failure-related variables associated with bandwidth sharing. However, a 1:1 
ratio is not always needed, as many applications can effectively operate with shared bandwidth, allowing for cost savings and resource 
optimization without signi�cantly impacting performance.
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Building a Clos Network with a 
Thousand, Ten Thousand, or even 
One Hundred Thousand End Points

The next step: 

Endpoints may refer to network connected servers, storage devices, routers, and user devices such as laptops. Building a Clos network 
to support one thousand endpoints, ten thousand endpoints, or even one hundred thousand endpoints is feasible simply by adding 
more leaf and spine switches to the Clos. 

A well-architected Clos infrastructure enables vast and rapid scalability without signi�cant redesign. Each additional spine switch 
increases bandwidth, minimizes data packet hops, and reduces latency. Also, rerouting traf�c to bypass failed switches enhances system 
performance, fault tolerance, and redundancy. 

We will use as an example a BENW for a very large AI/ML cluster with 131,072 end point accelerators (GPUs or TPUs).  We will select 
switches with 64 ports per switch and use transceivers that can operate at 800G or 2x400G.  The 400G links will connect to the end 
points and inter-switch links will be 800G.

Switches
Designing a non-blocking, three-stage Clos topology architecture for 100,000 endpoints involves balancing the 
number of switches required at the ingress, middle, and egress stages:

Edge stage Assuming 64 inputs per switch, this fabric requires 2,048 switches.

Aggregation 
stage

The middle-stage switch count the edge stage count: 2,048 switches.

Egress stage
The number of core switches is half the count of aggregation switches 
(i.e., 1,024 switches) 

Total (ingress + middle + egress): 
A Clos topology network supporting 131,072 endpoints requires 5,120 switches.
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Optical links per layer
Continuing with the example of a Clos topology designed to support 131,072 endpoints, each of the 2,024 edge 
switches connects to the aggregation switches with 32 links, resulting in 65,536 optical links. The same link count 
applies to the aggregation to core switch link for a total inter-switch link count of 131,072.

Power consumption
A power consumption per switch of 1,500 watts is assumed. Optical links also consume power but on a much 
smaller scale - around 30 watts per link, assuming 15 watts per 800G transceiver and two transceivers per link. 

Number of server racks
We assume 32 accelerators per GPU/TPU rack and 16 2RU switches per switch rack.  

This gives the following rack counts:

GPU/TPU 4,096 racks

Edge switches 128 racks

Aggregation switches 128 racks

Core switches 64 racks

Total 4,416 rack

Switch power 5,120 switches × 1500 watts per switch = 7,680 kW

Optical links 65,536 links x 300 watts per link = 1,966kW

Combining these �gures, the total power consumption across 
ingress, middle, egress, and optical links comes to 9,646 kW
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At its core, this document seeks to establish a link between the growing demand for advanced AI 
technologies and the increasing complexity of AI-optimized data centers (a forthcoming ‘Part 2’ will delve 
deeper into more advanced aspects of AI data center operations). 

Compared to traditional setups, AI data centers consume signi�cantly more power and generate massive 
amounts of heat. This necessitates innovation in cooling and energy management strategies, highlighting 
the importance of adopting ef�cient �ber cabling solutions to support high bandwidth while minimizing 
heat-related performance inef�ciencies. The shift from traditional air cooling to more effective liquid cooling 
methods further underscores the need for robust physical layer solutions capable of accommodating 
advanced cooling systems.

The discussion on network topologies and backend network design emphasizes the necessity of facilitating 
low-latency connections between accelerators – this is where AFL stands out as a player uniquely placed 
to meet the essential connectivity requirements for large-scale, cutting-edge AI and ML data center builds. 
With fewer than a handful of global companies capable of providing such specialized, state-of-the-art 
connectivity, AFL’s �ber network solutions ensure scalability and adaptability to not only meet, but exceed 
the changing network demands of tomorrow.

As data centers continue to evolve, the need for high-performance, energy-ef�cient optical �ber solutions 
becomes paramount. AFL sets an industry benchmark in offering advanced networking and physical layer 
solutions, inspiring data center operators to invest in future expansion plans with con�dence.

In summary, this document serves as a call to action for the data center industry, providing valuable insights 
for progressive stakeholders eager to adopt innovative AI and ML technologies.

In Conclusion...
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The information contained within this white paper is accurate and up-to-date to the best of our knowledge at the time of production. 
All graphs and visual representations are proprietary assets of AFL. These materials are intended for informational purposes only, and 

may not be used for commercial purposes without express permission from AFL.

Founded in 1984, AFL is an international manufacturer providing end-to-end 
network solutions to the energy, service provider, enterprise, hyperscale and 
industrial markets. The company’s products are in use in over 130 countries 
and include �ber optic cable, assemblies, and hardware, transmission and 
substation accessories, outside plant equipment, connectivity, test and 
inspection equipment, fusion splicers, and training. AFL also offers a wide 
variety of services supporting data center, enterprise, wireless and outside 
plant applications. 
  
Headquartered in Spartanburg, SC, AFL has operations in the U.S., Mexico, 
Canada, Europe, Asia and Australia, and is a wholly owned subsidiary of 
Fujikura Ltd. of Japan.


